
Natural Numbers Lists Trees

Structural Induction with Haskell

Thomas Sewell
UNSW

Term 3 2024

1



Natural Numbers Lists Trees

Recap: Induction

Definition

Let P(x) be a predicate on natural numbers x ∈ N. To show
∀x ∈ N. P(x), we can use induction:

Show P(0)

Assuming P(k) (the inductive hypothesis), show P(k + 1).

Example (Sum of Integers)

Write a recursive function sumTo to sum up all integers from 0 to
the input n.
Show that:

∀n ∈ N. sumTo n =
n(n + 1)

2

2



Natural Numbers Lists Trees

Haskell Data Types

We can define natural numbers as a Haskell data type, reflecting
this inductive structure.

data Nat = Z | S Nat

Example

Define addition, prove that ∀n. n + Z = n.

Inductive Structure

Observe that the non-recursive constructors correspond to base
cases and the recursive constructors correspond to inductive cases

3



Natural Numbers Lists Trees

Lists

Lists are singly-linked lists in Haskell. The empty list is written as
[] and a list node is written as x : xs. The value x is called the
head and the rest of the list xs is called the tail. Thus:

"hi!" == ['h', 'i', '!'] == 'h' : 'i' : '!' : []

== 'h':('i':('!':[]))

When we define recursive functions on lists, think about the
x : xs/[] representation to write pattern matches.

Example

(Re)-define the functions length, take and drop.

4



Natural Numbers Lists Trees

Induction on Lists
If lists weren’t already defined in the standard library, we could
define them ourselves:

data List a = Nil | Cons a (List a)

Induction

If we want to prove that a proposition holds for all lists:

∀xs. P(xs)

It suffices to:

1 Show P([]) (the base case from nil)

2 Assuming the inductive hypothesis P(xs), show P(x:xs)
(the inductive case from cons).

5



Natural Numbers Lists Trees

Induction on Lists

Example (Take and Drop)

Show that take (length xs) xs = xs for all xs.

Show that take 5 xs ++ drop 5 xs = xs for all xs.
=⇒ Sometimes we must generalise the proof goal.
=⇒ Sometimes we must prove auxiliary lemmas.

6



Natural Numbers Lists Trees

Binary Trees

data Tree a = Leaf
| Branch a (Tree a) (Tree a)

Induction Principle

To prove a property P(t) for all trees t:

Prove the base case P(Leaf ).

Assuming the two inductive hypotheses:

P(l) and
P(r)

We must show P(Branch x l r).

Example (Tree functions)

Define leaves and height, and show ∀t. height t < leaves t

7



Natural Numbers Lists Trees

Rose Trees

data Forest a = Empty | Cons (Rose a) (Forest a)

data Rose a = Node a (Forest a)

Note that Forest and Rose are defined mutually.

Example (Rose tree functions)

Define size and height, and try to show

∀t. height t ≤ size t

8



Natural Numbers Lists Trees

Simultaneous Induction
To prove a property about two types defined mutually, we have to
prove two properties simultaneously.

data Forest a = Empty | Cons (Rose a) (Forest a)

data Rose a = Node a (Forest a)

Inductive Principle

To prove a property P(t) about all Rose trees t and a property
Q(ts) about all Forests ts simultaneously:

Prove Q(Empty)

Assuming P(t) and Q(ts) (inductive hypotheses), show
Q(Cons t ts).

Assuming Q(ts) (inductive hypothesis), show P(Node x ts).

9


	Natural Numbers
	

	Lists
	

	Trees

